Jakie masz pytanie?

lub

Przy jakim kącie tangens jest równy kotangensowi?
Przy jakim kącie sinus jest równy cosinusowi?

tangens równy kotangensowi sinus równy cosinusowi funkcje trygonometryczne w matematyce
avatar

Gość (5.172.*.*)



Odpowiedź:

Zagadnienia dotyczące funkcji trygonometrycznych, takich jak tangens, kotangens, sinus i cosinus, są podstawą wielu problemów matematycznych. Warto przyjrzeć się bliżej tym funkcjom, aby zrozumieć, kiedy są sobie równe.

Tangens równy kotangensowi

Tangens (tg) i kotangens (ctg) to funkcje trygonometryczne, które są odwrotnościami siebie nawzajem. Matematycznie są one zdefiniowane jako:

  • Tangens kąta ~$\theta~#$ to stosunek sinus do cosinus: ~$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}~#$.
  • Kotangens kąta ~$\theta~#$ to stosunek cosinus do sinus: ~$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}~#$.

Aby znaleźć kąt, przy którym tangens jest równy kotangensowi, ustawiamy te dwie funkcje jako równe:

~| \tan(\theta) = \cot(\theta) ~#|

Podstawiając definicje, mamy:

~| \frac{\sin(\theta)}{\cos(\theta)} = \frac{\cos(\theta)}{\sin(\theta)} ~#|

Po przekształceniu równania otrzymujemy:

~| \sin^2(\theta) = \cos^2(\theta) ~#|

Z tożsamości trygonometrycznej ~$\sin^2(\theta) + \cos^2(\theta) = 1~#$, możemy wywnioskować, że:

~| 2\sin^2(\theta) = 1 \quad \text{lub} \quad 2\cos^2(\theta) = 1 ~#|

Co prowadzi do:

~| \sin^2(\theta) = \cos^2(\theta) = \frac{1}{2} ~#|

To oznacza, że ~$\theta = 45^\circ~#$ lub ~$\theta = 225^\circ~#$ (w radianach ~$\theta = \frac{\pi}{4}~#$ lub ~$\theta = \frac{5\pi}{4}~#$), ponieważ w tych punktach sinus i cosinus przyjmują wartość ~$\frac{\sqrt{2}}{2}~#$.

Sinus równy cosinusowi

Podobnie szukamy kąta, dla którego sinus jest równy cosinusowi:

~| \sin(\theta) = \cos(\theta) ~#|

Dzieląc obie strony przez ~$\cos(\theta)~#$ (zakładając, że ~$\cos(\theta)

Podziel się z innymi: